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Emerald is an object.based language for the construction of distributed applications. The principal features of 
Emerald lnehtde a uniform object model appropriate for programming both private local objects and shared remote 
objects, and a type system that permits multiple user.defined and compiler-defined implementations. Emerald 
objects are fully mobile and can move from node to node within the network, even during an invocation. This paper 
discusses the structure, programming, and inq~lementation of Emerald objects, and Emerald's use of abstract types. 

1. Introduction 

Distributed systems are inherently more complex to 

program than non-distributed systems. In an effort to 

reduce this complexity, much recent work has focused on 

toois that assist in the construction and programming of 
distributed systems and applications. Examples include 
message-based operating systems such as Accent [22] and 
V [12], remote procedure call facilities such as Xerox RPC 
[5], and languages such as Argus [20] and the Eden 
Programming Language (EPL,) [7]. 

There three approaches to distribution represent a 
succession of abstractions. Message-based systems 
require the programmer to deal with the details of locating 
message targets, packaging messages, and with 
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asynchronous communication. Remote procedure call 

hides the details of  packaging and process control and 

presents the programmer with a standard procedure call 

paradigm; however the programmer is responsible for 

locating the target of the call. Object-based languages 

such as Argus and EPL provide location-independent 
invocation of distributed objects; location is implicit. As 
one moves along this spectrum from message-based 
systems to distributed languages, flexibility and control are 
traded for simplicity and ease of programming. 

We have designed and are prototyping an object-based 
language called Emerald whose goal is to simplify 
distributed programming through language support while 
also providing acceptable performance and flexibility, both 
locally and in the distributed environment. The notion of 
object is fundamental to Emerald. We believe that objects 
are an excellent way to structure a distributed system 
because they encapsulate the concepts of process, 
procedure, data, and location. In Emerald, objects are the 
units of programming and distribution, and the entities 
between which communication takes place. However, we 
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do not believe that all aspects of distribution should be 
hidden from the programmer, and therefore the Emerald 
language has explicit notions of location and mobility. 

In the following sections we describe Emerald objects 
and the Emerald type system. Emerald is strongly typed 
and has been carefully designed so that types may be 
resolved statically (i.e., at compile time). Static typing 
permits the most efficient code to be generated, at some 
loss in flexibility. If this cost is significant, the 
programmer can explicitly delay type checking until run 
time. This facility might be used, for example, when 
invoking an unknown object obtained from a file service. 

2. Emera ld  Objects 

All entities in the Emerald system are objects. This 
includes small entities, such as Booleans and integers, and 
large entities, such as directories and compilers. While 
different objects may be implemented with different 
techniques, all objects exhibit uniform semantics. An 
object can be manipulated only through invocation; no 
external access to an object's data is permitted. Objects 
can be invoked remotely and can move from node to node. 

Each Emerald object has four components: 

1. A name, which uniquely identifies the object within 
the network. 

2. A representation, which consists of the data stored in 
the object. The representation of a programmer- 
defined object is composed of a collection of 
references to other objects. 

3. A set of operations, which define the functions and 
procedures that the object can execute. Some 
operations are exported and may be invoked by other 
objects, while others may be private to the object. 

4. An optional process, which operates in parallel with 
invocations of the object's operations. An object with 
a process has an active existence and executes 
independently of other objects. An object without a 
process is a passive data object and executes only as a 
result of invocations. 

An Emerald object also has several attributes. An object 
has a location that specifies the node on which that object 
is currently resident. Emerald objects can be defined to be 
immutable; this simplifies sharing in a distributed system, 
since immutable objects can be freely copied. 
Immutability is an assertion on the part of the programmer 

that the abstract state of an object does not change; it is not 
a concrete property and the system does not attempt to 
check it. 

Emerald supports concurrency both between objects 
and within an object. Within the network many objects 
can execute concurrently. Within a single object, several 
operation invocations can be in progress simultaneously, 
and these can execute in parallel with the object's internal 
process. To control access to variables shared by different 
operations, the shared variables and the operations 
manipulating them can be defined within a monitor 
[10, 16]. Processes synchronize through builtin condition 
objects. An object's process executes outside of the 
monitor, but can invoke monitored operations should it 
need access to shared state. 

Each object has an optional initially section - a 
parameterless operation that executes exactly once when 
the object is created and is used to initialize the object 
state. When the initially operation is complete, the 
object's process is started and invocations can be accepted. 

3. Abstract Types 

Central to Emerald is the concept of abstract type. An 
abstract type defines a collection of operation signatures, 
that is, operation names and the types of their arguments 
and results. All identifiers in Emerald are typed: the 
programmer must declare the abstract type of the objects 
that an identifier may name. An abstract type is 
represented by an Emerald object that specifies such a list 
of signatures. For example, if the variable MyMallbox is 
declared as: 

var MyMailbox : AbstractMaiibox 

then any object that is assigned to MyMailbox must 
implement (at least) the operations defined by 
AbstractMallbox. 

We say that the abstract type of the object being 
assigned must conform to the abstract type of the 
identifier. Conformity is the basis of type checking in 
Emerald. Informally, a type $ conforms to a type T 
(written S ¢, 7) if: 

1. 5 provides at least the operations of T (S may have 
more operations). 

2. For each operation in T, the corresponding operation in 
S has the same number of arguments and results. 
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3. The abstract types of the results of ,~'s operations 
conform to the abstract types of the results of T's 
operations. 

4. The abstract types of the arguments of 7"s operations 
conform to the abstract types of the arguments of S's 
operations (i.e., arguments must conform in the 
opposite direction). 

Conformity" is defined formally in [8]; i t  is similar to type 
compatibifity in Owl [24]. 

The relationship between abstract types and object 
implementations is many-to.one in both directions. A 
single object may conform to many abstract types, and an 
abstract type may be implemented by many different 
objects. Although Emerald requires that the abstract type 
of each identifier be manifest, the type of the object that is 
to be assigned to an identifier may not be known until run 
time. In such a case, the conformity check will be 
performed at run time. However, very often enough 
information will be available at compile time for 
conformity to be checked statically. 

It is important to note the difference between type 
conformity in Emerald and subclasses in Smalltalk [ 14]. In 

Emerald. the relationship between an object and the 
abstract type(s) that it implements is one of shared 
interface. A n  object supports a superset of the operations 
defined by its abstract types and each the supported 
operations must conform to the corresponding operations 
in the abstract types. In Smalltalk, tile relationship 
between a subclass and its superclass is one of shared 
implementation. A subclass is free to redefine the 
signatures of the messages that it receives, but it 
necessarily shares the superclass's representation (instance 
variables) and typically shares many methods as well. 

We expect that Emerald's strong typing will have 
several benefits. First is early detection and notification of 
programming errors. In Smalltalk, errors of the "message 
not understood" variety can be generated only at run time. 
We would like to detect many such errors through compile 
time type checking. In cases where we cannot completely 
type check an assignment at compile time, our run-time 
messages can be more explicit, e.g., "object Q does not 
conform to abstract type P" .  The second benefit is 
increased performance. In most cases, compile time 
conformity checks permit us to do assignment and 
invocation without run time type checking. In some cases 
a mn time check is required; however, the check is made 
on assignment, and once it succeeds subsequent 

invocations can execute without further checking. Finally, 
in many cases compile time type information allows us to 
generate very efficient invocation code. This is described 
in more detail in Section 8. 

4. Objec t  Crea t ion  

As described above, an identifier in Emerald programs has 
an abstract type, and an object must conform to that 
abstract type to be named by the identifier. However, 
Emerald objects do not require a Class object for their 
creation. In most object-based systems, the programmer 
first specifies a class object that defines the structure and 
behavior of all its instances. The class object also 
responds to new invocations to make new instances. 

In contrast, an Emerald object is created by executing 
an object constructor. An object constructor is an Emerald 
expression that defines the representation, the operations, 
and the process of an object. For example, suppose the 
Emerald program in Figure 4.1 is executed. This results in 
the creation of a single object. If we wished to create 
more oneEntryDirectories we would embed the object 

¢onst myDirectory - -  object oneEntryDirectory 
export Store, Lookup 
monitor 

vat name : Strin& 
vat AnObject : Any 

operation Store [ n : String, o : Any] 
nartt~ck...n 

AnObject ~-- o 

end Store 

function Lookup [ n : String ! ~ [ o : Any/  
Ifn - nam~ 

then o *-- AnObject 
else o ¢-- nil 

end If 
end Lookup 

Initially 
name ~-- nll 
AnObjoct ~ nll 

end Initially 

end monitor 
end oneEntryDirectory 

Figure 43: A oneEntryDirectory Object 
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const myDirectoryCreator - .  
Immutable object on~EmryDirectoryCreator 

export Empty 

const OED - -  type OED 
operation Store [ Swin&. Any ] 
function Lookup [ String ] --~ [ Any ] 

end OED 

& 

12 

16 

operation Empty ~ [ result : OED I 
resldt (-- object oneEntryDirectory 

export Store, Lookup 

monitor 
var name : String 
var AnObject : Any 

operation Store [ n : SWin&, o : Any ] 
l~#~qGc..-n 

AnObject ¢.- o 
end Store 

20 

24 

28 

function Lookgp [ n : Strin& ] --) I o : Any ] 
i f n -  nan~ 

then o (-- AnObject 
else o ¢-- nU 

end If 
end Lookup 

Initially. 
name ~- nU 
AnObject ¢- nil 

end Initially 

end monitor 
end oneEntryOirectory 

end Empty 
end m~Emr y D ir ectoryC reat or 

Figure 4.2: A oneEntryDirectory Creator 

constructor of Figure 4.1 in a context in which it might be 
repeatedly executed, such as the body of a loop or 
ol~radon. This is illus~rated in Figure 4.2. In this 
example, we construct the single object specified by the 
outermost object constructor. That object exports an 
operation called Empty; invoking the Empty operation 
executes the object constructor on lines 9 to 29. creating a 
new object that conforms to abstract type OEDt, 
Conceptually, each object so created possesses its own 
copy of the code for Store and Lookup, as in SW2 [18]. In 

t In order to declare Empty, it is also necessary to declare a new 
abstract type OED. This is avoided in a language liko Russell [9] 
by making the comp/Jer infer the types of operaLion results. 

practice, there will be at most a single copy of the code on 
each node, and that copy will be shared. 

The notion of object creator can be extended to as 

many levels as the programmer requires. For example, 

consider the builtin object Array. Array exports an of 
operation that expects an abstract type argument, as in 

Array.of[inte&er] . 

The result of this invocation is an object that exports an 

operation Create of zero arguments. When Create is 

invoked, as in 

Array.of [ Inte&er].Cr ecce 

the result is an array object, i.e., an object that exports 

operations like setEler~nt, getEiement, and upperbound. 

In a similar way, one could define a typed 
OneEntryDirectory creator creator that is parameterized by 

the type of the directory entry as shown in Figure 4.3. 

const myTypedOirectOryCreatorCreator - -  
IIt~Ml~Ntbkl.Ob~ typ~wecloryCreatorCreator 
export of . . . .  

4 function of [  Elem~m'J'ype : AbswactType ] -.* 
[ result : DirectoryCreatorTyl~] 

where 
OED - -  type OED 

8 operation Store [ String, ElemmtType ] 
function Look~ [ Strin& ] -~ [ £1em~TYi~ ] 

end OED 
DirectoryCreatorType - -  type T 

12 operation Empty --~ [ result : OF.D ] 
end T 

end where 

16 

20 

result ¢-.- object typedDirectoryCreator 
export empty 

operation Empty --, [ result : OED ] 
result ¢-- object oneEntryDirectory 
export Store, Lookup 

24 
end oneF~ryDir~ctory 

end E~Auty 
end tyl~dDirector~reator 

end of 
end typedDirectotyCreatorCreator 

Figure 43: A typed Directory Creator Creator 
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5. Abs t rac t  Types as Objects  

Abstract types are objects that obey a particular invocation 
protocol: they export an operation (without arguments) 
called get$ignature that returns a Sigsmtare. In other 
words, an abstract type is an object that conforms to the 
following abstract type: 

Immutable type abstr~:tTypc 
function tetSi#nat~e - ,  I Si#nmwe i 

end ahstracITyp¢ 

Conversely, any object that conforms to the above type 
may be treated as an abstract type. For example, if we add 
the following function definition to Figure 4.2, 

function ItetSi&natur, -.~ [ result : $i&nalwe ] 
result ¢.- OED 

end letSisnature 

we may use oneEmryDirectoryCreator as an abstract type. 
We may now write 

vat aDir : myDire.cloryCrcalor 
aDir ¢-. myDire~toryCrcator.F.mpty 

rather than 

v•r aOir : AbstractDirectory 
aDir ~ myOircctoryCrt.ator.Empty 

Given the dual role of myDirectoryCreawr, we see that it 
may have been appropriate to give it a less descriptive 
name. Similarly, we may define the primitive object Array 
such that the object returned by the of  operation may he 
used as an abstract type~:. This allows us to write 

v•r a: Array.ofllntqer] 
a ,-- Array.ofllnteter].Creatt 

6. Suppor t ing  M u l t i p l e  hnp lemen ta t ions  

The most important goal of the Emerald design is the 
support of a uniform object model. The semantics of all 
objects, whether large or small, local or distributed, should 

be independent of the implementation technique. This 
uniformity should hold both for the progranuner who 
builds objects and types, and for the application that 
invokes them. 

The best example of a system with a uniform object 
model is Smalltalk. One characteristic that makes this 
possible is that Smalltalk is not distributed. In a 

t We previously stated that the abstract type of every identifier in 
Emerald must be manifest. The expression Array.ofllntes~r] is 
manifest since the target (Array) is immutable, the operation (of) 
is • function, and the argument (Ime&er) is immutable. The ex- 
pression can therefore be evaluated by the compiler. 

distributed environment, the different implementation 
techniques that must be used for local and remote 
invocation often lead to the use of different abstractions 
for local and remote objects. For example, in the MIT 
Argus system [21], there are two different entities: Argus 
Guardians [20], which represent the abstraction of a node, 
and CLU Clusters [I9], which represent local objects 
contained inside Guardians. In the Eden Programming 
Language [7], used to build applications on the Eden 
system [4], large network-wide entities are written as Eden 
objects, while local entities are defined using Concurrent 
Euclid data structures [17]. 

The problem with the two model approach is that the 
programmer must decide which model to use. Because the 
two models are semantically distinct, once an object is 
implemented in one style it must be rewritten for use as 
the other. For example, i f  we build an Eden tree object in 
EPL, and later need a tree for internal use within another 
object, we must either design and code a different tree, or 
suffer the inefficiencies of the more general 

implementation. 

In Emerald, all objects are coded using the single 
object definition mechanism. At compile time, the 
Emerald compiler chooses among several implementation 
styles for the object, picking one that is appropriate to the 
object's use. Different implementations vadeoff 
representation efficiency and invocation overhead for 
generality. Three different implementation styles are used. 

1. Global objects are those that can be moved within the 
network and can be invoked by other objects not 
known at compile time (in other words, references to 
them can be exported). These objects are heap 
allocated by the Emerald kernel and are referenced 
indirectly. An invocation may require a remote 
procedure call. 

2. local  objects are local to another object (i.e., a 
reference to them is never exported from that object). 
They are heap allocated by compiled code. These 
objects never move independently of their enclosing 
object. An invocation may be implemented by a local 
procedure call or by inline code. 

3. Direct obj, cts are local objects except that their data 
area is allocated directly in the representation of the 
enclosing object. These are used mainly for builtin 
types, structures of built in types, records, and other 
simple objects whose organization can be deduced at 
compile time. 
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Thus, Emerald is similar to EPL and Argus, in that 
there are several different implementation styles with 
varying performance characteristics. However, unlike 
these languages, the implementation differences are 
hidden from the programmer. The compiler chooses the 
best implementation based on compile time information. 
In many cases, the compiler c~n determine the 
implementation of local objects and can use this 
information for further optimizations. If the compiler 
knows only the abstract type then it must assume the more 
general object invocation mechanism. 

7. Distr ibution Suppor t  

Emerald is designed for the construction of distributed 
applications. As previously stated, we believe that objects 
are an excellent way of structuring such programs because 
they provide the units of processing and distribution. This 
belief has been confirmed by our experience with 
distributed applications in Eden [1-3, 6]. 

The tendency of many distributed systems is to hide 
distribution from the programmer. For example, in Xerox 
RPC [5], remote procedure calls were added to Cedar 
Mesa. In so far as it was possible, remote procedure calls 
were designed to be semantically identical to local 
procedure calls. This is obviously a desirable property and 
is what makes RPC so attractive; programs can be written 
and debugged on a single node using local procedures and 
then easily distributed. 

Emerald supports the same notion with object 
invocation. All objects are manipulated through 
invocation, and all invocations are location independent; 
it is the responsibility of the run-time system to locate and 
transfer control to the target object. Remote invocation 
achieves the same benefits as remote procedure call. 

While it is crucial that invocation be location 
independent, it is not necessary that an object's location be 
invisible. Many applications may choose to ignore 
distribution, but others may wish to benefit from location 
dependence. For example, a replication manager may 
wish to distribute object replicas on different nodes, or two 
applications may wish to be co-located during periods of 
high activity. Applications that are concerned with 
distribution may wish to discover and modify objects' 
locations, but they still benefit from location-independent 
invocation. 

For these reasons, the Emerald language includes a 
small number of location primitives. Basic to these 
primitives are node objects, which are the logical location 
entities in the system. A node is an abstraction of the 
concept of a physical machine, but it is possible for several 
node objects to exist on a single machine. (in fact, in our 
current implementation, a node is really an address space 

in which objects are contained.) An object can: 

i. Locate another object, i.e., determine on what node it 
resides. 

2. F/x another object at a particular node. 

3. Unfix an object, i.e., make it movable following a fix. 

4. Move an object to another location. 

In all cases, location is specified through a reference to a 
target object; the location thus described is the node on 
which the target currently exists. The target can be an 
explicit node object, or any other object. 

The choice of parameter passing semantics is crucial to 
both remote procedure call and object invocation. In an 
object-based system, the obvious choice is cail-by-object- 

reference. Since the value of a variable is a reference to 
an object, it is that reference (the object name) that is 
passed in an invocation. This presents a potentially 
serious performance problem on distributed systems; any 
invocation by a remotely invoked object of its parameters 
is likely to cause another remote invocation. For this 
reason, systems such as Argus have required that 
parameters to remote calls be passed by value, not by 
reference [15]. 

Because Emerald objects are mobile, it may be 
possible to avoid many remote references by moving 
parameter objects to the site of the callee. Whether or not 
this is worthwhile depends on the size of the parameter 
object, the number of active invocations, and the number 
of invocations to be issued by the called object. We 
expect that parameter objects will be moved in two cases. 
First, based on compile-time information, the Emerald 
compiler may decide to move an object along with an 
invocation. For example, small immutable objects may be 
copied cheaply and are obvious candidates. Second, the 
programmer may decide that an object should be moved 
based on knowledge about the application. To make this 
possible, Emerald supports a parameter passing mode that 
we call call-by-move. A call-by-move parameter is passed 
by reference, as is any other parameter, but at the time of 
the call it is relocated to the destination site. Following the 
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call i t  is returned, unless it is a copy of an immutable 
object, in which case it is garbage collected. 

Call-by-move is a convenience and a performance 
optimization. The move could be done explicitly with the 
move primitive, but that would require more explicit code 
and would not allow packaging of parameter objects in the 
same message as the invocation. While call-by-move co- 
locates the parameter with the target object, it increases 
the cost of the call and may cause extra remote references 
from the call's initiator. One of our goals is therefore to 
experiment with various policies for using this parameter 
passing mechanism. 

8. Implementa t ion  Aspects 

The Emerald system is being prototyped on a small 
network of DEC MicroVAX !1 workstations connected by 
a ten Megabit/s Ethernet. The system runs on top of 
Berkeley Unix. Using Unix has some performance 
consequences, particularly in inter-machine 
communication; however, it has litde impact on 
performance within a node. 

Emerald is implemented in two closely related parts, 
the Emerald compiler and the Emerald kernel. An 
Emerald node is a single Unix address space in which the 
kernel and all objects located on that node execute. 
Processes within objects are lightweight for fast context 
switching and invocation. Processes and monitors are 
implemented as in Concurrent Pascal [11]. Protection is 
provided by the compiler, as in Xerox Mesa/Pilot [23]. 

As previously described, objects can be implemented 
in several ways. Direct objects are supported directly 
("inline") within other objects and =re invisible to the 
kernel Other objects are created by kernel calls and 
supported by kernel data structures. 

To support remote referencing and mobility, object 
references must be location independent. Since direct 
objects are compiled inline or allocated direcdy in 
invocation records, they can be referenced by offset within 
the object or data structure. Al l  other objects are 
referenced by the address of a node-local object 
descriptor. The object descriptor contains the object's 
unique ID, a location hint i f  the object is remote, and a 
pointer to its data area, process, and code i f  the object is 
locally resident An object descriptor must exist on a node 
as long as any references to the corresponding object 
remain on that node. Object descriptors are heap allocated 

by the kernel and garbage collected. 

Each node also has an object table that contains an 
entry for every remotely referable object on that node. 
The object table is used to determine if an object exists on 
a node, and if so to provide the address of its object 

descriptor. 

Because an object reference is the address of an object 
descriptor, references are machine-dependent and must be 
translated when an object moves. When the kernel moves 
an object, it sends along a mapping of object descriptor 
addresses to object IDs. On the receiving node, new 
object descriptors are allocated as needed and the object 
references are modified to point to them. On the sending 
node, the object descriptor for a moved object is modified 
to indicate the object's new location. The location is 
treated as a hint; we are using a location protocol based 
on forwarding addresses [13] supplemented by a reliable 
broadcast that is used when forwarding addresses are lost 
(due to crashes). 

To help the kernel in finding references that need to be 
translated, the compiler generates templates that describe 
the structure of each objecL Code and templates are stored 
in kernel structures called concrete types. One concrete 
type exists for each object constructor. They are 
immutable, and copies of them may exist on many nodes. 
When an object is moved to another node, the concrete 
type is not sent along; it is requested by the target node 
only i f  needed. 

Locating the code for an invoked operation is 
simplified by the Emerald type system. The abstract type 
of a variable specifies the operations that can be performed 
on the object i t  names. At run time, the variable 
references an object with a specific concrete type. Even 
though the object may have more operations than the 
abstract type, the additional operations cannot be invoked. 

The data structure used to locate operations is called an 
Abstract-Concrete vector. We associate with each 
variable a vector with one entry for each operation defined 
by its abstract type. The contents of the entry is the 
address of the corresponding procedure entry point in the 
concrete type. On invocation, a simple indexing operation 
produces the address of the procedure to call. 

When an assignment is made, the vector may have to 
be changed if the new object is implemented by a different 
concrete type. The compiler generates code to perform 
this change if it cannot tell the concrete type of the object 
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to be assigned. Note that an Abstract-Concrete vector 
must exist for every pair <abstract type, concrete type>, 
but these vectors can be shared by all variables (on the 
same node) that have the same abstract/concrete binding. 

9. Conclusions 

The goal of Emerald is to support the construction of 
object-based distributed programs while providing 
excellent performance for local and private objects. 
Emerald's novel features include its single object model 
used for both small private objects and large mobile 
objects, its abstract type system that permits static type 
checking while allowing multiple implementations, and its 
explicit notion of location. 

Languages like Smalltalk rely heavily on the concept 
of Class. However, Classes have at least three functions: 
they generate instances, they act as a repository for the 
code of those instances, and (through the inheritance 
hierarchy) they provide a classification scheme for 
instances. Emerald allocates these functions to separate 
mechanisms: objects are created by explicit constructors, 
code sharing is managed by the kernel, and abstract types 
provide a classification scheme that is independent of an 
object's implementation. 

We have been designing Emerald for over a year and 
are now building a prototype implementation. We 
currently have a printitive single-node kernel and a 

compiler capable of compiling simple Emerald objects 
into VAX machine code. Early performance tests indicate 
that we can execute a local invocation in approximately 
the same time as that required by a comparable calling 
sequence using the VAX Calls instruction, and a process 
context switch in about seven times the Calls time. 
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